Friday, April 08, 2005

SLM paper on Optics Express
The field-of-view (FOV) of a simple imaging system can be dramatically improved using a liquid crystal spatial light modulator (SLM). A SLM can be used to correct the off-axis aberrations that often limit the useful FOV of an imaging system giving near diffraction-limited performance at much larger field angles than would otherwise be possible. Foveated imaging refers to the variation in spatial resolution across the image caused by using the SLM in this application, and it is useful in reducing bandwidth requirements for data transmission.
We discuss the application of spatial light modulators (SLMs) to the field of atom optics. We show that SLMs may be used to generate a wide variety of optical potentials that are useful for the guiding and dipole trapping of atoms. This functionality is demonstrated by the production of a number of different light potentials using a single SLM device. These include Mach-Zender interferometer patterns and the generation of a bottle-beam. We also discuss the current limitations in SLM technology with regard to the generation of both static and dynamically deformed potentials and their use in atom optics.
A novel full-color autostereoscopic three-dimensional (3D) display system has been developed using color-dispersion-compensated (CDC) synthetic phase holograms (SPHs) on a phase-type spatial light modulator. To design the CDC phase holograms, we used a modified iterative Fourier transform algorithm with scaling constants and phase quantization level constraints. We obtained a high diffraction efficiency (~90.04%), a large signal-to-noise ratio (~9.57dB), and a low reconstruction error (~0.0011) from our simulation results. Each optimized phase hologram was synthesized with each CDC directional hologram for red, green, and blue wavelengths for full-color autostereoscopic 3D display. The CDC SPHs were composed and modulated by only one phase-type spatial light modulator. We have demonstrated experimentally that the designed CDC SPHs are able to generate full-color autostereoscopic 3D images and video frames very well, without any use of glasses.

No comments:

Post a Comment